Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1335307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633260

RESUMO

Introduction: Cutaneous leishmaniasis is a neglected vector-borne parasitic disease prevalent in 92 countries with approximately one million new infections annually. Interactions between vector saliva and the human host alter the response to infection and outcome of disease. Methods: To characterize the human immunological responses developed against saliva of Phlebotomus duboscqi, a Leishmania major (L. major) vector, we repeatedly exposed the arms of 14 healthy U.S volunteers to uninfected P. duboscqi bites. Blood was collected a week after each exposure and used to assess total IgG antibodies against the proteins of P. duboscqi salivary gland homogenate (SGH) and the levels of IFN-gamma and IL-10 from peripheral blood mononuclear cells (PBMCs) stimulated with SGH or recombinant sand fly proteins. We analyzed skin punch biopsies of the human volunteer arms from the insect bite site and control skin site after multiple P. duboscqi exposures (four volunteers) using immunohistochemical staining. Results: A variety of immediate insect bite skin reactions were observed. Late skin reactions to insect bites were characterized by macular hyperpigmentation and/or erythematous papules. Hematoxylin and eosin staining showed moderate mononuclear skin infiltrate with eosinophils in those challenged recently (within 2 months), eosinophils were not seen in biopsies with recall challenge (6 month post bites). An increase in plasma antigen-specific IgG responses to SGH was observed over time. Western Blot results showed strong plasma reactivity to five P. duboscqi salivary proteins. Importantly, volunteers developed a cellular immunity characterized by the secretion of IFN-gamma upon PBMC stimulation with P. duboscqi SGH and recombinant antigens. Discussion: Our results demonstrate that humans mounted a local and systemic immune response against P. duboscqi salivary proteins. Specifically, PduM02/SP15-like and PduM73/adenosine deaminase recombinant salivary proteins triggered a Th1 type immune response that might be considered in future development of a potential Leishmania vaccine.


Assuntos
Mordeduras e Picadas de Insetos , Phlebotomus , Animais , Humanos , Phlebotomus/parasitologia , Leucócitos Mononucleares , Imunidade Celular , Antígenos , Imunoglobulina G , Proteínas e Peptídeos Salivares
2.
Parasit Vectors ; 16(1): 1, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593519

RESUMO

BACKGROUND: The saliva of sand flies, vectors of Leishmania parasites, contains several components that exert pharmacological activity facilitating the acquisition of blood by the insect and contributing to the establishment of infection. Previously, we demonstrated that PpSP32 is the immunodominant salivary antigen in humans exposed to Phlebotomus papatasi bites and validated its usefulness as a predictive biomarker of disease. PpSP32, whose functions are little known to date, is an intriguing protein due to its involvement in the etiopathogenesis of pemphigus, an auto-immune disease. Herein, we aimed to better decipher its role through the screening of several immunomodulatory activity either on lymphocytes or on monocytes/macrophages. METHODS: Peripheral mononuclear cells from healthy volunteers were stimulated with anti-CD3/anti-CD28 antibodies, phytohemagglutinin, phorbol 12-myristate 13-acetate/ionomycin, or lipopolysaccharide in the presence of increasing doses of PpSP32. Cell proliferation was measured after the addition of tritiated thymidine. Monocyte activation was tested by analyzing the expression of CD86 and HLA-DR molecules by flow cytometry. Cytokine production was analyzed in culture supernatants by ELISA. THP-1-derived macrophages were stimulated with LPS in the presence of increasing doses of PpSP32, and cytokine production was analyzed in culture supernatants by ELISA and multiplex technique. The effect of PpSP32 on NF-kB signaling was tested by Western blot. The anti-inflammatory activity of PpSP32 was assessed in vivo in an experimental inflammatory model of carrageenan-induced paw edema in rats. RESULTS: Our data showed that PpSP32 down-modulated the expression of activation markers in LPS-stimulated monocytes and THP1-derived macrophages. This protein negatively modulated the secretion of Th1 and Th2 cytokines by human lymphocytes as well as pro-inflammatory cytokines by monocytes, and THP1-derived macrophages. PpSP32 treatment led to a dose-dependent reduction of IκB phosphorylation. When PpSP32 was injected into the paw of carrageenan-injected rats, edema was significantly reduced. CONCLUSIONS: Our data indicates that PpSP32 induces a potent immunomodulatory effect on monocytes and THP-1-derived macrophages. This inhibition could be mediated, among others, by the modulation of the NF-kB signaling pathway. The anti-inflammatory activity of PpSP32 was confirmed in vivo in the carrageenan-induced paw edema model in rats.


Assuntos
Phlebotomus , Humanos , Ratos , Animais , Phlebotomus/parasitologia , Monócitos , NF-kappa B , Carragenina , Lipopolissacarídeos , Linfócitos , Macrófagos , Citocinas , Proteínas e Peptídeos Salivares
3.
Microorganisms ; 9(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34835379

RESUMO

Visceral leishmaniasis (VL) is the most severe clinical form of leishmaniasis, fatal if untreated. Vaccination is the most cost-effective approach to disease control; however, to date, no vaccines against human VL have been made available. This work examines the efficacy of a novel vaccine consisting of the Leishmania membrane protein KMP11, LEISH-F3+ (a recombinant fusion protein, composed of epitopes of the parasite proteins nucleoside hydrolase, sterol-24-c-methyltransferase, and cysteine protease B), and the sand fly salivary protein LJL143, in two dose ratios. The inclusion of the TLR4 agonist GLA-SE as an adjuvant, and the use of virosomes (VS) as a delivery system, are also examined. In a hamster model of VL, the vaccine elicited antigen-specific immune responses prior to infection with Leishmania infantum. Of note, the responses were greater when higher doses of KMP11 and LEISH-F3+ proteins were administered along with the GLA-SE adjuvant and/or when delivered within VS. Remarkably, hamsters immunized with the complete combination (i.e., all antigens in VS + GLA-SE) showed significantly lower parasite burdens in the spleen compared to those in control animals. This protection was underpinned by a more intense, specific humoral response against the KMP11, LEISH-F3+, and LJL143 antigens in vaccinated animals, but a significantly less intense antibody response to the pool of soluble Leishmania antigens (SLA). Overall, these results indicate that this innovative vaccine formulation confers protection against L. infantum infection, supporting the advancement of the vaccine formulation into process development and manufacturing and the conduction of toxicity studies towards future phase I human clinical trials.

4.
PLoS Negl Trop Dis ; 15(7): e0009638, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34310619

RESUMO

BACKGROUND: The leishmaniases are a group of sandfly-transmitted diseases caused by species of the protozoan parasite, Leishmania. With an annual incidence of 1 million cases, 1 billion people living in Leishmania-endemic regions, and nearly 30,000 deaths each year, leishmaniasis is a major global public health concern. While phlebotomine sandflies are well-known as vectors of Leishmania, they are also the vectors of various phleboviruses, including Sandfly Fever Sicilian Virus (SFSV). Cutaneous leishmaniasis (CL), caused by Leishmania major (L. major), among other species, results in development of skin lesions on the infected host. Importantly, there exists much variation in the clinical manifestation between individuals. We propose that phleboviruses, vectored by and found in the same sandfly guts as Leishmania, may be a factor in determining CL severity. It was reported by our group that Leishmania exosomes are released into the gut of the sandfly vector and co-inoculated during blood meals, where they exacerbate CL skin lesions. We hypothesized that, when taking a blood meal, the sandfly vector infects the host with Leishmania parasites and exosomes as well as phleboviruses, and that this viral co-infection results in a modulation of leishmaniasis. METHODOLOGY/PRINCIPAL FINDINGS: In vitro, we observed modulation by SFSV in MAP kinase signaling as well as in the IRF3 pathway that resulted in a pro-inflammatory phenotype. Additionally, we found that SFSV and L. major co-infection resulted in an exacerbation of leishmaniasis in vivo, and by using endosomal (Toll-like receptor) TLR3, and MAVS knock-out mice, deduced that SFSV's hyperinflammatory effect was TLR3- and MAVS-dependent. Critically, we observed that L. major and SFSV co-infected C57BL/6 mice demonstrated significantly higher parasite burden than mice solely infected with L. major. Furthermore, viral presence increased leukocyte influx in vivo. This influx was accompanied by elevated total extracellular vesicle numbers. Interestingly, L. major displayed higher infectiveness with coincident phleboviral infection compared to L. major infection alone. CONCLUSION/SIGNIFICANCE: Overall our work represents novel findings that contribute towards understanding the causal mechanisms governing cutaneous leishmaniasis pathology. Better comprehension of the potential role of viral co-infection could lead to treatment regimens with enhanced effectiveness.


Assuntos
Infecções por Bunyaviridae/complicações , Leishmaniose Cutânea/complicações , Macrófagos/metabolismo , Células Mieloides/metabolismo , Phlebovirus , Animais , Linhagem Celular , Coinfecção , Feminino , Imunidade Inata , Inflamação , Fator Regulador 3 de Interferon , Leishmania major , Sistema de Sinalização das MAP Quinases , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/parasitologia , Células Mieloides/virologia , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo
5.
Nat Commun ; 11(1): 3461, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651371

RESUMO

Leishmaniasis is a neglected tropical disease caused by Leishmania protozoa transmitted by infected sand flies. Vaccination through leishmanization with live Leishmania major has been used successfully but is no longer practiced because it resulted in occasional skin lesions. A second generation leishmanization is described here using a CRISPR genome edited L. major strain (LmCen-/-). Notably, LmCen-/- is a genetically engineered centrin gene knock-out mutant strain that is antibiotic resistant marker free and does not have detectable off-target mutations. Mice immunized with LmCen-/- have no visible lesions following challenge with L. major-infected sand flies, while non-immunized animals develop large and progressive lesions with a 2-log fold higher parasite burden. LmCen-/- immunization results in protection and an immune response comparable to leishmanization. LmCen-/- is safe since it is unable to cause disease in immunocompromised mice, induces robust host protection against vector sand fly challenge and because it is marker free, can be advanced to human vaccine trials.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Leishmania major/genética , Leishmania major/patogenicidade , Vacinas Atenuadas/uso terapêutico , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Dexametasona/farmacologia , Feminino , Citometria de Fluxo , Edição de Genes , Engenharia Genética , Humanos , Terapia de Imunossupressão , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Psychodidae/parasitologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Trends Parasitol ; 36(6): 498-501, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32359871

RESUMO

Epigenetic manipulation of host cells by intracellular pathogens has become increasingly evident. Lecoeur et al. show us how Leishmania amazonensis inhibits macrophage inflammasomes by modifying histone H3 activation marks on NF-κB-associated gene promoters that increase the expression of inhibitors and downmodulates activators of this pathway.


Assuntos
Leishmania , Epigênese Genética , Histonas/metabolismo , Inflamassomos/metabolismo , Leishmania/metabolismo , Macrófagos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
7.
J Invest Dermatol ; 138(3): 598-606, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29054598

RESUMO

Nowadays, there is no available vaccine for human leishmaniasis. Animal experiments demonstrate that pre-exposure to sand fly saliva confers protection against leishmaniasis. Our preceding work in humans indicates that Phlebotomus papatasi saliva induces the production of IL-10 by CD8+ T lymphocytes. The neutralization of IL-10 enhanced the activation of a T-cell CD4+ population-producing IFN-γ. Herein, we used a biochemical and functional genomics approach to identify the sand fly salivary components that are responsible for the activation of the T helper type 1 immune response in humans, therefore constituting potential vaccine candidates against leishmaniasis. Fractionated P. papatasi salivary extracts were first tested on T lymphocytes of immune donors. We confirmed that the CD4+ lymphocytes proliferate and produce IFN-γ in response to stimulation with the proteins of molecular weight >30 kDa. Peripheral blood mononuclear cells from immune donors were transfected with plasmids coding for the most abundant proteins from the P. papatasi salivary gland cDNA library. Our result showed that the "yellow related proteins," PPTSP42 and PPTSP44, and "apyrase," PPTSP36, are the proteins responsible for the aforementioned cellular immune response and IFN-γ production. Strikingly, PPTSP44 triggered the highest level of lymphocyte proliferation and IFN-γ production. Multiplex cytokine analysis confirmed the T helper type 1-polarized response induced by these proteins. Importantly, recombinant PPTSP44 validated the results observed with the DNA plasmid, further supporting that PPTSP44 constitutes a promising vaccine candidate against human leishmaniasis.


Assuntos
Apirase/imunologia , Leishmaniose Cutânea/prevenção & controle , Phlebotomus/imunologia , Vacinas Protozoárias/imunologia , Proteínas e Peptídeos Salivares/imunologia , Vacinação , Adolescente , Adulto , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Interferon gama/biossíntese , Ativação Linfocitária , Masculino , Células Th1/imunologia , Adulto Jovem
8.
NPJ Vaccines ; 2: 23, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29263878

RESUMO

Vaccine development for vector-borne pathogens may be accelerated through the use of relevant challenge models, as has been the case for malaria. Because of the demonstrated biological importance of vector-derived molecules in establishing natural infections, incorporating natural challenge models into vaccine development strategies may increase the accuracy of predicting efficacy under field conditions. Until recently, however, there was no natural challenge model available for the evaluation of vaccine candidates against visceral leishmaniasis. We previously demonstrated that a candidate vaccine against visceral leishmaniasis containing the antigen LEISH-F3 could provide protection in preclinical models and induce potent T-cell responses in human volunteers. In the present study, we describe a next generation candidate, LEISH-F3+, generated by adding a third antigen to the LEISH-F3 di-fusion protein. The rationale for adding a third component, derived from cysteine protease (CPB), was based on previously demonstrated protection achieved with this antigen, as well as on recognition by human T cells from individuals with latent infection. Prophylactic immunization with LEISH-F3+formulated with glucopyranosyl lipid A adjuvant in stable emulsion significantly reduced both Leishmania infantum and L. donovani burdens in needle challenge mouse models of infection. Importantly, the data obtained in these infection models were validated by the ability of LEISH-F3+/glucopyranosyl lipid A adjuvant in stable emulsion to induce significant protection in hamsters, a model of both infection and disease, following challenge by L. donovani-infected Lutzomyia longipalpis sand flies, a natural vector. This is an important demonstration of vaccine protection against visceral leishmaniasis using a natural challenge model.

9.
Infect Immun ; 82(7): 2736-45, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24733091

RESUMO

Cutaneous leishmaniasis is a sand fly-transmitted disease characterized by skin ulcers that carry significant scarring and social stigmatization. Over the past years, there has been cumulative evidence that immunity to specific sand fly salivary proteins confers a significant level of protection against leishmaniasis. In this study, we used an attenuated strain of Listeria monocytogenes as a vaccine expression system for LJM11, a sand fly salivary protein identified as a good vaccine candidate. We observed that mice were best protected against an intradermal needle challenge with Leishmania major and sand fly saliva when vaccinated intravenously. However, this protection was short-lived. Importantly, groups of vaccinated mice were protected long term when challenged with infected sand flies. Protection correlated with smaller lesion size, fewer scars, and better parasite control between 2 and 6 weeks postchallenge compared to the control group of mice vaccinated with the parent L. monocytogenes strain not expressing LJM11. Moreover, protection correlated with high numbers of CD4(+), gamma interferon-positive (IFN-γ(+)), tumor necrosis factor alpha-positive/negative (TNF-α(+/-)), interleukin-10-negative (IL-10(-)) cells and low numbers of CD4(+) IFN-γ(+/-) TNF-α(-) IL-10(+) T cells at 2 weeks postchallenge. Overall, our data indicate that delivery of LJM11 by Listeria is a promising vaccination strategy against cutaneous leishmaniasis inducing long-term protection against ulcer formation following a natural challenge with infected sand flies.


Assuntos
Proteínas de Insetos/imunologia , Leishmania major/imunologia , Leishmaniose Cutânea/prevenção & controle , Listeria monocytogenes , Psychodidae/fisiologia , Proteínas e Peptídeos Salivares/imunologia , Animais , Mordeduras e Picadas/imunologia , Mordeduras e Picadas/parasitologia , Orelha Externa/imunologia , Orelha Externa/parasitologia , Insetos Vetores/parasitologia , Vacinas contra Leishmaniose/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/classificação , Vacinas Sintéticas
10.
PLoS Negl Trop Dis ; 8(3): e2751, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24675711

RESUMO

BACKGROUND: Novel vaccination approaches are needed to prevent leishmaniasis. Live attenuated vaccines are the gold standard for protection against intracellular pathogens such as Leishmania and there have been new developments in this field. The nonpathogenic to humans lizard protozoan parasite, Leishmania (L) tarentolae, has been used effectively as a vaccine platform against visceral leishmaniasis in experimental animal models. Correspondingly, pre-exposure to sand fly saliva or immunization with a salivary protein has been shown to protect mice against cutaneous leishmaniasis. METHODOLOGY/PRINCIPAL FINDINGS: Here, we tested the efficacy of a novel combination of established protective parasite antigens expressed by L. tarentolae together with a sand fly salivary antigen as a vaccine strategy against L. major infection. The immunogenicity and protective efficacy of different DNA/Live and Live/Live prime-boost vaccination modalities with live recombinant L. tarentolae stably expressing cysteine proteinases (type I and II, CPA/CPB) and PpSP15, an immunogenic salivary protein from Phlebotomus papatasi, a natural vector of L. major, were tested both in susceptible BALB/c and resistant C57BL/6 mice. Both humoral and cellular immune responses were assessed before challenge and at 3 and 10 weeks after Leishmania infection. In both strains of mice, the strongest protective effect was observed when priming with PpSP15 DNA and boosting with PpSP15 DNA and live recombinant L. tarentolae stably expressing cysteine proteinase genes. CONCLUSION/SIGNIFICANCE: The present study is the first to use a combination of recombinant L. tarentolae with a sand fly salivary antigen (PpSP15) and represents a novel promising vaccination approach against leishmaniasis.


Assuntos
Cisteína Proteases/imunologia , Leishmania/imunologia , Vacinas contra Leishmaniose/imunologia , Proteínas e Peptídeos Salivares/imunologia , Vacinação/métodos , Animais , Anticorpos Antiprotozoários/sangue , Cisteína Proteases/biossíntese , Cisteína Proteases/genética , Modelos Animais de Doenças , Feminino , Leishmaniose/prevenção & controle , Vacinas contra Leishmaniose/administração & dosagem , Vacinas contra Leishmaniose/genética , Leucócitos Mononucleares/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Psychodidae , Proteínas e Peptídeos Salivares/biossíntese , Proteínas e Peptídeos Salivares/genética , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
11.
Parasitol Int ; 61(4): 599-603, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22668837

RESUMO

Echinococcus granulosus sensu stricto is a cosmopolitan parasite causing cystic echinococcosis in humans and livestock. Recent molecular phylogeographic studies suggested the rapid dispersal of the parasite by the anthropogenic movement of domestic animal hosts. In the present study, genetic polymorphism of E. granulosus s. s. in the Middle East, where the domestication started, was investigated to validate the dispersal history of the parasite. Thirty-five and 26 hydatid cysts were collected from Iran and Jordan, respectively, and mitochondrial cytochrome c oxidase subunit I (cox1) gene was sequenced. Chinese and Peruvian specimens were also analyzed for comparison. Haplotype network analysis demonstrated the existence of a common haplotype EG01 in all populations. Although EG01 and its one-step neighbors were the majority in all regions, most of the neighboring haplotypes were unique in each locality. Haplotype diversity was high but nucleotide diversity was low in Iran, Jordan and China. Both diversities were lowest and only a few haplotypes were found in Peru. Neutrality indices were significantly negative in Iran, Jordan and China, and positive but not significant in Peru. Pairwise fixation index was significant for all pairwise comparisons, indicating genetic differentiation among populations. These results suggest a evolutionary history of E. granulosus s. s. in which a genetic subgroup including EG01 was selected at the dawn of domestication, and then it was rapidly dispersed worldwide through the diffusion of stock raising. To approach the origin of the ancestral strain, extensive sampling is needed in many endemic regions. To evaluate the hypothetical evolutionary scenario, further study is needed to analyze specimens from diverse host species in wider regions.


Assuntos
Equinococose/veterinária , Echinococcus granulosus/classificação , Echinococcus granulosus/genética , Polimorfismo Genético , Animais , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Equinococose/epidemiologia , Equinococose/parasitologia , Regulação Enzimológica da Expressão Gênica , Haplótipos , Humanos , Oriente Médio/epidemiologia , Dados de Sequência Molecular
12.
Immunol Rev ; 239(1): 237-70, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21198676

RESUMO

The neglected tropical diseases (NTDs) represent a group of parasitic and related infectious diseases such as amebiasis, Chagas disease, cysticercosis, echinococcosis, hookworm, leishmaniasis, and schistosomiasis. Together, these conditions are considered the most common infections in low- and middle-income countries, where they produce a level of global disability and human suffering equivalent to better known conditions such as human immunodeficiency virus/acquired immunodeficiency syndrome and malaria. Despite their global public health importance, progress on developing vaccines for NTD pathogens has lagged because of some key technical hurdles and the fact that these infections occur almost exclusively in the world's poorest people living below the World Bank poverty line. In the absence of financial incentives for new products, the multinational pharmaceutical companies have not embarked on substantive research and development programs for the neglected tropical disease vaccines. Here, we review the current status of scientific and technical progress in the development of new neglected tropical disease vaccines, highlighting the successes that have been achieved (cysticercosis and echinococcosis) and identifying the challenges and opportunities for development of new vaccines for NTDs. Also highlighted are the contributions being made by non-profit product development partnerships that are working to overcome some of the economic challenges in vaccine manufacture, clinical testing, and global access.


Assuntos
Doenças Negligenciadas/imunologia , Doenças Parasitárias/imunologia , Doenças Parasitárias/prevenção & controle , Vacinas Protozoárias , Vacinas , Animais , Modelos Animais de Doenças , Helmintíase/imunologia , Helmintíase/prevenção & controle , Helmintíase/terapia , Humanos , Enteropatias Parasitárias/imunologia , Enteropatias Parasitárias/prevenção & controle , Enteropatias Parasitárias/terapia , Doenças Negligenciadas/epidemiologia , Doenças Negligenciadas/prevenção & controle , Doenças Negligenciadas/terapia , Doenças Parasitárias/epidemiologia , Doenças Parasitárias/terapia , Áreas de Pobreza , Infecções por Protozoários/imunologia , Infecções por Protozoários/prevenção & controle , Infecções por Protozoários/terapia , Vacinas Protozoárias/imunologia , Medicina Tropical , Vacinas/imunologia
13.
Mol Microbiol ; 77(2): 399-414, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20497506

RESUMO

Leishmaniasis is caused by the dimorphic protozoan parasite Leishmania. Differentiation of the insect form, promastigotes, to the vertebrate form, amastigotes, and survival inside the vertebrate host accompanies a drastic metabolic shift. We describe a gene first identified in amastigotes that is essential for survival inside the host. Gene expression analysis identified a 27 kDa protein-encoding gene (Ldp27) that was more abundantly expressed in amastigotes and metacyclic promastigotes than in procyclic promastigotes. Immunofluorescence and biochemical analysis revealed that Ldp27 is a mitochondrial membrane protein. Co-immunoprecipitation using antibodies to the cytochrome c oxidase (COX) complex, present in the inner mitochondrial membrane, placed the p27 protein in the COX complex. Ldp27 gene-deleted parasites (Ldp27(-/-)) showed significantly less COX activity and ATP synthesis than wild type in intracellular amastigotes. Moreover, the Ldp27(-/-) parasites were less virulent both in human macrophages and in BALB/c mice. These results demonstrate that Ldp27 is an important component of an active COX complex enhancing oxidative phosphorylation specifically in infectious metacyclics and amastigotes and promoting parasite survival in the host. Thus, Ldp27 can be explored as a potential drug target and parasites devoid of the p27 gene could be considered as a live attenuated vaccine candidate against visceral leishmaniasis.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Leishmania/patogenicidade , Macrófagos/parasitologia , Proteínas Mitocondriais/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Deleção de Genes , Teste de Complementação Genética , Humanos , Leishmania/genética , Leishmania/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Fosforilação Oxidativa , RNA de Protozoário/genética , Alinhamento de Sequência , Virulência
14.
Science ; 321(5891): 970-4, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18703742

RESUMO

Infection with the obligate intracellular protozoan Leishmania is thought to be initiated by direct parasitization of macrophages, but the early events following transmission to the skin by vector sand flies have been difficult to examine directly. Using dynamic intravital microscopy and flow cytometry, we observed a rapid and sustained neutrophilic infiltrate at localized sand fly bite sites. Invading neutrophils efficiently captured Leishmania major (L.m.) parasites early after sand fly transmission or needle inoculation, but phagocytosed L.m. remained viable and infected neutrophils efficiently initiated infection. Furthermore, neutrophil depletion reduced, rather than enhanced, the ability of parasites to establish productive infections. Thus, L.m. appears to have evolved to both evade and exploit the innate host response to sand fly bite in order to establish and promote disease.


Assuntos
Leishmania major/fisiologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Infiltração de Neutrófilos , Neutrófilos/imunologia , Neutrófilos/parasitologia , Phlebotomus/parasitologia , Animais , Apoptose , Movimento Celular , Citometria de Fluxo , Interações Hospedeiro-Parasita , Mordeduras e Picadas de Insetos , Insetos Vetores/parasitologia , Leishmania major/imunologia , Leishmaniose Cutânea/transmissão , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia , Neutrófilos/fisiologia , Fagocitose , Pele/imunologia , Pele/parasitologia
15.
BMC Genomics ; 7: 52, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16539713

RESUMO

BACKGROUND: Immune responses to sandfly saliva have been shown to protect animals against Leishmania infection. Yet very little is known about the molecular characteristics of salivary proteins from different sandflies, particularly from vectors transmitting visceral leishmaniasis, the fatal form of the disease. Further knowledge of the repertoire of these salivary proteins will give us insights into the molecular evolution of these proteins and will help us select relevant antigens for the development of a vector based anti-Leishmania vaccine. RESULTS: Two salivary gland cDNA libraries from female sandflies Phlebotomus argentipes and P. perniciosus were constructed, sequenced and proteomic analysis of the salivary proteins was performed. The majority of the sequenced transcripts from the two cDNA libraries coded for secreted proteins. In this analysis we identified transcripts coding for protein families not previously described in sandflies. A comparative sandfly salivary transcriptome analysis was performed by using these two cDNA libraries and two other sandfly salivary gland cDNA libraries from P. ariasi and Lutzomyia longipalpis, also vectors of visceral leishmaniasis. Full-length secreted proteins from each sandfly library were compared using a stand-alone version of BLAST, creating formatted protein databases of each sandfly library. Related groups of proteins from each sandfly species were combined into defined families of proteins. With this comparison, we identified families of salivary proteins common among all of the sandflies studied, proteins to be genus specific and proteins that appear to be species specific. The common proteins included apyrase, yellow-related protein, antigen-5, PpSP15 and PpSP32-related protein, a 33-kDa protein, D7-related protein, a 39- and a 16.1- kDa protein and an endonuclease-like protein. Some of these families contained multiple members, including PPSP15-like, yellow proteins and D7-related proteins suggesting gene expansion in these proteins. CONCLUSION: This comprehensive analysis allows us the identification of genus- specific proteins, species-specific proteins and, more importantly, proteins common among these different sandflies. These results give us insights into the repertoire of salivary proteins that are potential candidates for a vector-based vaccine.


Assuntos
Proteínas de Insetos/classificação , Insetos Vetores/genética , Phlebotomus/genética , Proteínas e Peptídeos Salivares/classificação , Sequência de Aminoácidos , Animais , Apirase/classificação , Evolução Molecular , Feminino , Biblioteca Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia , Insetos Vetores/imunologia , Leishmaniose Visceral/prevenção & controle , Leishmaniose Visceral/transmissão , Dados de Sequência Molecular , Phlebotomus/imunologia , Filogenia , Proteômica , Vacinas Protozoárias/imunologia , Glândulas Salivares/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/imunologia , Alinhamento de Sequência , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA